Journal of Agriculture Biotechnology

The Effect of Exogenous Application of Proline and Glycine Betaineon the Nodule Activity of Soybean Under Saline Condition

A. EL Sabagh, S. Sorour, A. Ragab, H. Saneoka, M.S. Islam

Abstract


Salinity is considered one of the main abiotic stress that influence the growth and development of several important legume plants. Proline and glycine betaine are provided in tolerant plant in response to stresses. Therefore, a greenhouse experiment was conducted to investigate the activity in nodules, number and proline and Glycine Betaine-induced response of soybean under salinity stress conditions. Based on the results, salinity stress reduced biological nitrogen fixation, specific nodule activity and nodule number than normal irrigation conditions. Exogenous proline and glycine betaine significantly increased biological nitrogen fixation and specific nodule activity under stress conditions. Consequently, the results will help to solve salinity problem and could be provide the sustainable agriculture.

Keywords


Biological nitrogen fixation, osmo-protectants, salinity, soybean, specific nodule activity

Full Text:

References


Abd El-Wahed, M.H., EL Sabagh, A., Mohammed, H., Ueda, A., Saneoka, H. and Celaleddin, B. 2015. Evaluation of barley productivity and water use efficiency under saline water irrigation in Arid Region. Int. J. Agric. Crop Sci., 8: 765-773. Ahmad, N., Wyn Jones, R.G. and Jeschke, W.D. 1987.Effect of exogenous glycine betaine on Na+ transport in barley roots. J. Exp. Bot., 38: 913-921. Alyemeni, M.N., Hayat, Q.,Hayat S., Faizan,M. And Faraz,A.2016. Exogenous proline application enhances the efficiency of nitrogen fixation and assimilation in chickpea plants exposed to cadmium. Legume Res., 39(2): 221-227. Ali, A.J. and Nasser, A. 2007. Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Biologia Bratislava, 62(5): 562-564. Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C. and Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6(9): 2026-2032. Ashraf, M.and Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot., 59: 207-216. Bhardwaj, K.K.R. 1974. Numbers of bacteria in saline-alkaline soils determined by a plate method. Soil Biol. Biochem.,6: 69-70. Duranti, M. 2006. Grain legume proteins and nutraceutical properties. Fitoterapia, 77: 67-82. Delgado, M.J., Garrido, J.M., Ligero, F. and Lluch, C. 1993. Nitrogen fixation and carbon metabolism by nodules and bacteroids of pea plants under sodium chloride stress. Physiol. Plant., 89:824-829. Delgado, M.J., Ligero, F. and Lluch, C. 1994. Effects of salt stress on growth and nitrogen fixation by pea, faba bean, common bean and soybean plants. Soil Biol. Chem., 26:371-376. EL Sabagh, A., Omar, A., Saneoka, H.andBarutçular, C. 2015a. Physiological performance of soybean germination and seedling growth under salinity stress.Dicle University Inst. Nat. Apd. Sci. J., 4(1): 6-15. EL Sabagh, A., Omar, A., Saneoka, H., and Barutçular, C. 2015b. Comparative physiological study of soybean (Glycine max L.) cultivars under salt stress.YYUJAGRSCI,25(3): 269-278. El-Sabagh, A., Sorour, S., Ueda, A., Saneoka, H., and Barutçular, C. 2015c. Evaluation of salinity stress effects on seed yield and quality of three soybean cultivars. Azarian J. Agric., 2(5): 138-141.

EL Sabagh, A., Sorour, S., Omar, A., Ragab, A., Islam, M.S., Barutçular, C., Ueda, A. and Saneoka. H. 2015d. Alleviation of adverse effects of salt stress on soybean (Glycine max L.) by using osmoprotectants and compost application. Int. J. Biol. Biomol. Agril. Food Biotech. Eng., 9: 9.

EL Sabagh, A., Islam, M.S., Ueda, A., Saneoka, H. and Barutçular, C. 2015e. Increasing reproductive stage tolerance to salinity stress in soybean. Int. J. Agric. Crop Sci., 8: 738-745. Georgiev, G.I. and Atkias, C.A.1993.Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis, 15:239-255. Hafeez, F.Y., Aslam, Z. and Malik, K.A. 1988. Effect of salinity and inoculation on growth, nitrogen fixation and nutrient uptake of Vignaradiata(L.) Wilczek. Plant Soil, 106: 3-8. Hardy, R.W.F., Burns, R.C. and Holsten, R.D. 1973. Application of the acetylene-ethylene reduction assay for measurement of nitrogen fixation. Soil Biol. Biochem., 5: 47-48. Harinasut, P., Tsutsui, K., Takabe, T., Nomura, M. and Kishitani, S. 1996. Exogenous glycinebetaine accumulation and increased salt tolerance in rice seedlings. Biosci. Biotechnol.Biochem., 60: 366-368. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani A.S., Pichtel J. and Ahmad, A. 2012. Role of proline under changing environments: a review. Plant Signal. Behav., 7:1456-1466. Hill, J., Nelson, E., Tilman, D., Polasky, S. and Tiffany, D. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci., 103: 11206-11210. Hoque, M.A., Banu, M.N., Okuma, E., Amako, K., Nakamura, Y.,Shimoishi, Y. and Murata, Y. 2007b. Exogenous prolineand glycinebetaine ingresses NaCl-induced ascorbate glutathionecycle enzyme activities and proline improvessalt tolerance more than glycinebetaine in tobacco Brightyellow-2 suspension- cultured cells. J. Plant Physiol.,164: 553-561. Islam, M.S., Akhter M.M., EL Sabagh A., Liu L.Y., Nguyen N.T., Ueda A., Masaoka, Y. and Saneoka, H. 2011. Comparative studies on growth and physiological responses to saline and alkaline stresses of Foxtail millet (Setariaitalica L.) and Proso millet (Panicummiliaceum L.). Aust. J. Crop Sci.,5(10): 1269-1277. Luis, B., Abd El-Aziz, E. and Bonilla, I. 2003. Recovery of development and functionality of nodules and plant growth in salt-stressed Pisumsativum, Rhizobium leguminosarum symbiosis by boron and calcium. J. Plant Physiol., 160: 1493-1497. Oo, A.N., Iwai, C.B. and Saenjan, P. 2013. Soil properties and maize growth in saline and non-saline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad Dev., doi:10.1002/ldr.2208. Osman, H.S. 2015. Ehancing antioxidant-yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Ann. Agric. Sci., 60(2): 389-402. Nandwal, A.S., Bharti, S., Sjepran, I.S. and Kuhad, M.S. 1991. Drought effects on carbon exchange and nitrogen fixation in pigeonpea (Cajanuscajan L.). J. Plant Physiol., 138: 125-127.

Rezaei, M.A., Kaviani, B. and Masouleh, A.K. 2012. The effect of exogenous glycine betaine on yield of soybean [Glycine max (L.) Merr.] in two contrasting Abd El-Wahed, M.H., EL Sabagh, A., Mohammed, H., Ueda, A., Saneoka, H. and Celaleddin, B. 2015. Evaluation of barley productivity and water use efficiency under saline water irrigation in Arid Region. Int. J. Agric. Crop Sci., 8: 765-773. Ahmad, N., Wyn Jones, R.G. and Jeschke, W.D. 1987.Effect of exogenous glycine betaine on Na+ transport in barley roots. J. Exp. Bot., 38: 913-921. Alyemeni, M.N., Hayat, Q.,Hayat S., Faizan,M. And Faraz,A.2016. Exogenous proline application enhances the efficiency of nitrogen fixation and assimilation in chickpea plants exposed to cadmium. Legume Res., 39(2): 221-227. Ali, A.J. and Nasser, A. 2007. Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Biologia Bratislava, 62(5): 562-564. Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C. and Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6(9): 2026-2032. Ashraf, M.and Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot., 59: 207-216. Bhardwaj, K.K.R. 1974. Numbers of bacteria in saline-alkaline soils determined by a plate method. Soil Biol. Biochem.,6: 69-70. Duranti, M. 2006. Grain legume proteins and nutraceutical properties. Fitoterapia, 77: 67-82. Delgado, M.J., Garrido, J.M., Ligero, F. and Lluch, C. 1993. Nitrogen fixation and carbon metabolism by nodules and bacteroids of pea plants under sodium chloride stress. Physiol. Plant., 89:824-829. Delgado, M.J., Ligero, F. and Lluch, C. 1994. Effects of salt stress on growth and nitrogen fixation by pea, faba bean, common bean and soybean plants. Soil Biol. Chem., 26:371-376. EL Sabagh, A., Omar, A., Saneoka, H.andBarutçular, C. 2015a. Physiological performance of soybean germination and seedling growth under salinity stress.Dicle University Inst. Nat. Apd. Sci. J., 4(1): 6-15. EL Sabagh, A., Omar, A., Saneoka, H., and Barutçular, C. 2015b. Comparative physiological study of soybean (Glycine max L.) cultivars under salt stress.YYUJAGRSCI,25(3): 269-278. El-Sabagh, A., Sorour, S., Ueda, A., Saneoka, H., and Barutçular, C. 2015c. Evaluation of salinity stress effects on seed yield and quality of three soybean cultivars. Azarian J. Agric., 2(5): 138-141.

EL Sabagh, A., Sorour, S., Omar, A., Ragab, A., Islam, M.S., Barutçular, C., Ueda, A. and Saneoka. H. 2015d. Alleviation of adverse effects of salt stress on soybean (Glycine max L.) by using osmoprotectants and compost application. Int. J. Biol. Biomol. Agril. Food Biotech. Eng., 9: 9.

EL Sabagh, A., Islam, M.S., Ueda, A., Saneoka, H. and Barutçular, C. 2015e. Increasing reproductive stage tolerance to salinity stress in soybean. Int. J. Agric. Crop Sci., 8: 738-745. Georgiev, G.I. and Atkias, C.A.1993.Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis, 15:239-255. Hafeez, F.Y., Aslam, Z. and Malik, K.A. 1988. Effect of salinity and inoculation on growth, nitrogen fixation and nutrient uptake of Vignaradiata(L.) Wilczek. Plant Soil, 106: 3-8. Hardy, R.W.F., Burns, R.C. and Holsten, R.D. 1973. Application of the acetylene-ethylene reduction assay for measurement of nitrogen fixation. Soil Biol. Biochem., 5: 47-48. Harinasut, P., Tsutsui, K., Takabe, T., Nomura, M. and Kishitani, S. 1996. Exogenous glycinebetaine accumulation and increased salt tolerance in rice seedlings. Biosci. Biotechnol.Biochem., 60: 366-368. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani A.S., Pichtel J. and Ahmad, A. 2012. Role of proline under changing environments: a review. Plant Signal. Behav., 7:1456-1466. Hill, J., Nelson, E., Tilman, D., Polasky, S. and Tiffany, D. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci., 103: 11206-11210. Hoque, M.A., Banu, M.N., Okuma, E., Amako, K., Nakamura, Y.,Shimoishi, Y. and Murata, Y. 2007b. Exogenous prolineand glycinebetaine ingresses NaCl-induced ascorbate glutathionecycle enzyme activities and proline improvessalt tolerance more than glycinebetaine in tobacco Brightyellow-2 suspension- cultured cells. J. Plant Physiol.,164: 553-561. Islam, M.S., Akhter M.M., EL Sabagh A., Liu L.Y., Nguyen N.T., Ueda A., Masaoka, Y. and Saneoka, H. 2011. Comparative studies on growth and physiological responses to saline and alkaline stresses of Foxtail millet (Setariaitalica L.) and Proso millet (Panicummiliaceum L.). Aust. J. Crop Sci.,5(10): 1269-1277. Luis, B., Abd El-Aziz, E. and Bonilla, I. 2003. Recovery of development and functionality of nodules and plant growth in salt-stressed Pisumsativum, Rhizobium leguminosarum symbiosis by boron and calcium. J. Plant Physiol., 160: 1493-1497. Oo, A.N., Iwai, C.B. and Saenjan, P. 2013. Soil properties and maize growth in saline and non-saline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad Dev., doi:10.1002/ldr.2208. Osman, H.S. 2015. Ehancing antioxidant-yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Ann. Agric. Sci., 60(2): 389-402. Nandwal, A.S., Bharti, S., Sjepran, I.S. and Kuhad, M.S. 1991. Drought effects on carbon exchange and nitrogen fixation in pigeonpea (Cajanuscajan L.). J. Plant Physiol., 138: 125-127.

Rezaei, M.A., Kaviani, B. and Masouleh, A.K. 2012. The effect of exogenous glycine betaine on yield of soybean [Glycine max (L.) Merr.] in two contrasting cultivars Pershing and DPX under soil salinity stress. Plant Omics J., 5: 87-93. Singleton, P. W. andBohlool. B.1984. Effect of salinity on nodule formationby soybean. Plant Physiol.74: 72-76. Szabados, L. And Savoure, A. 2010. Proline: a multifunctional amino acid. Trends Plant Sci., 15(2): 89-97. Tu, J.C. 1981. Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean. Can. J. Plant Sci., 61: 231-239. Yang, X, and Lu, C. 2005. Photosynthesis is improved by exogenous glycine betaine in salt-stressed maize plants. Physiologia Planta., 124 (3): 343-352. Yousef, A.N. andSprent, J.I. 1983. Effect of NaCl on growth, nitrogenincroporation and chemical composition of inoculated andNH4NO3 fertilized Viciafaba(L.) plants. J. Exp. Bot., 143: 941-950. Zahran, H.H. andSprent, J.I. 1986. Effects of sodium chloride and polyethylene glycol on roothairinfection and nodulation of Viciafaba(L.) plants by Rhizobium leguminosarum. Planta, 167:303_309. Zhan, X., Wang, B., Li, H., Liu, R., Kalia, R.K., Zhu, J.K. and Chinnusamy, V. 2012. Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. PNAS, 109(44): 18198-18203.

Zhu, J.K. 2001. Plant salt tolerance. Trends Plant Sci., 2: 66-71.


Refbacks

  • There are currently no refbacks.