Journal of Pharmaceutical and Biomedical Sciences

Neuroprotective Effect of Extract-fractions from Sceletium tortuosum and their Preliminary Constituents Identification by UPLC-qTOF-MS with Collision Energy and MassFragment Software

Yangwen Luo, Srinivas Patnala, Luchen Shan, Lipeng Xu, Yi Dai, Isadore Kanfer, Pei Yu

Abstract


Aim The objective of this study was to investigate solvent extracts of Sceletium tortuosum for their neuroprotective effect and further identify the constituents in the pharmacologically active solvent fractions.

Methods Sceletium tortuosum material was extracted with petroleum ether and ethyl acetate respectively. The extracts were further subjected to silica-gel column chromatography to obtain six sub-fractions. The sub-factions were tested for neuroprotective effects based on their evaluation in MPP+-injured N2a cells and L-glutamate-injured PC12 cells by MTT assay. The sub-fractions were further tested by ultraperformance liquid chromatography (UPLC) coupled to quadrupole-time-of-flight mass spectrometry (qTOF) with collision energy (MSE) to identify relevant constituents using MassFragment software in Masslynx4 software. 

Results The highly non-polar petroleum ether fraction and the polar ethyl acetate fraction showed potential in vitro neuroprotective activity. The UPLC-qTOF-MSE results of sub-fractions indicated the presence of dihydrojoubertiamine, mesembrenone, mesembrine, 2-oxomesembrine, Delta7-mesembrenone, N-demethyl-N-formylmesembrenone, dihydrobuphanamine acetate, sceletium A4, sceletenone, Delta7-N-demethyl-mesembrenone, 2-oxomesembranol, N-methyldihydrojoubertinamine and other unnamed components.

Conclusion The polar and nonpolar extracts of Sceletium tortuosum exhibit neuroprotective effect in N2a cells or PC12 cells injured by MPP+ or L-glutamate respectively. Two sub-fractions each of the petroleum ether and ethyl acetate fractions were observed to have comparatively higher neuroprotective efficacy than other sub-fractions and the MS profile indicated the presence of dihydrojoubertiamine and an unidentified non-alkaloid in these two sub-fractions. While the presence of mesembrine, mesembrenone and other alkaloids were observed in the other two neuroprotective sub-fractions, the results indicate that there are unidentified constituents of Sceletium tortuosum that require further investigation.


Keywords


Sceletium tortuosum; mesembrine; neuroprotective effect; UPLC-qTOF-MSE; alkaloids.

Full Text:

References


Filipovi SR, Covickovi-Sterni? N, Stojanovi?-Svetel M, Leci D, Kosti VS. Depression in Parkinson's disease: an EEG frequency analysis study. Parkinsonism Relat Disord. 1998 Dec;4(4):171-8. doi: 10.1016/s1353-8020(98)00027-3.

Gericke N, Harvey A, Viljoen A, Hofmeyr D, inventors; H.L. Hall & Sons Limited, S. Afr. . assignee. Sceletium extract and uses thereof patent US20120004275A1. 2012.

Dimpfel W, inventor; HG&H Pharmaceuticals Pty. Ltd., S. Afr. . assignee. Mesembrenol and/or mesembranol for prophylaxis and treatment of patients suffering from epilepsy and associated diseases patent WO2019021196A1. 2019.

Loria MJ, Ali Z, Abe N, Sufka KJ, Khan IA. Effects of Sceletium tortuosum in rats. J Ethnopharmacol. 2014 Aug 8;155(1):731-5. doi: 10.1016/j.jep.2014.06.007.

Chiu S, Gericke N, Farina-Woodbury M, Badmaev V, Raheb H, Terpstra K, Antongiorgi J, Bureau Y, Cernovsky Z, Hou J, Sanchez V, Williams M, Copen J, Husni M, Goble L. Proof-of-Concept Randomized Controlled Study of Cognition Effects of the Proprietary Extract Sceletium tortuosum (Zembrin) Targeting Phosphodiesterase-4 in Cognitively Healthy Subjects: Implications for Alzheimer's Dementia. Evid Based Complement Alternat Med. 2014;2014:682014. doi: 10.1155/2014/682014.

Hoffman JR, Markus I, Dubnov-Raz G, Gepner Y. Ergogenic Effects of 8 Days of Sceletium Tortuosum Supplementation on Mood, Visual Tracking, and Reaction in Recreationally Trained Men and Women. J Strength Cond Res. 2020 Sep;34(9):2476-2481. doi: 10.1519/JSC.0000000000003693.

Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G. Neuroprotective and Antioxidant Effect of Ginkgo biloba Extract Against AD and Other Neurological Disorders. Neurotherapeutics. 2019 Jul;16(3):666-674. doi: 10.1007/s13311-019-00767-8.

Davies J, Chen J, Pink R, Carter D, Saunders N, Sotiriadis G, Bai B, Pan Y, Howlett D, Payne A, Randeva H, Karteris E. Orexin receptors exert a neuroprotective effect in Alzheimer's disease (AD) via heterodimerization with GPR103. Sci Rep. 2015 Jul 30;5:12584. doi: 10.1038/srep12584.

González-Burgos E, Liaudanskas M, Viškelis J, Žvikas V, Janulis V, Gómez-Serranillos MP. Antioxidant activity, neuroprotective properties and bioactive constituents analysis of varying polarity extracts from Eucalyptus globulus leaves. J Food Drug Anal. 2018 Oct;26(4):1293-1302. doi: 10.1016/j.jfda.2018.05.010.

Ren Z, Zhang R, Li Y, Li Y, Yang Z, Yang H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med. 2017 Nov;40(5):1444-1456. doi: 10.3892/ijmm.2017.3127.

S Yousef AO, A Fahad A, Abdel Moneim AE, Metwally DM, El-Khadragy MF, Kassab RB. The Neuroprotective Role of Coenzyme Q10 Against Lead Acetate-Induced Neurotoxicity Is Mediated by Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activities. Int J Environ Res Public Health. 2019 Aug 13;16(16):2895. doi: 10.3390/ijerph16162895.

Kapewangolo P, Tawha T, Nawinda T, Knott M, Hans R. Sceletium tortuosum demonstrates in vitro anti-HIV and free radical scavenging activity. South African Journal of Botany. 2016;106:140-3.

Bennett AC, Van Camp A, López V, Smith C. Sceletium tortuosum may delay chronic disease progression via alkaloid-dependent antioxidant or anti-inflammatory action. J Physiol Biochem. 2018 Nov;74(4):539-547. doi: 10.1007/s13105-018-0620-6.

Popelak A, Lettenbauer G. Mesembrine alkaloids. Alkaloids. 1967;9:467-82.

Smith MT, Field CR, Crouch NR, Hirst M. The distribution of mesembrine alkaloids in selected taxa of the Mesembryanthemaceae and their modification in the Sceletium derived "kougoed". Pharm Biol (Lisse, Neth). 1998;36(3):173-9.

Martin NH, Rosenthal D, Jeffs PW. Mass spectra of Sceletium alkaloids. Org Mass Spectrom. 1976;11(1):1-19. doi.org/10.1002/oms.1210110103.

Nieuwenhuis JJ, Strelow F, Strauss HF, Wiechers A. (4R)-(-)-O-Methyljoubertiamine and O-methyldihydrojoubertiamine, two minor alkaloids from Sceletium subvelutium L. Bolus. J Chem Soc, Perkin Trans 1. 1981(1):284-6.

Rodrigo RGA, Editor. The Alkaloids: Chemistry and Physiology, Vol. XIX.: Academic Press; 1981. 341 pp. p.

Gericke N, Viljoen AM. Sceletium--a review update. J Ethnopharmacol. 2008 Oct 28;119(3):653-63. doi: 10.1016/j.jep.2008.07.043.

Psotta K, Strelow F, Wiechers A. Joubertinamine: a novel seco-mesembrane alkaloid. J Chem Soc, Perkin Trans 1. 1979(4):1063-5.

Capps TM, Hargrave KD, Jeffs PW, McPhail AT. Sceletium alkaloids. Part 7. Structure and absolute stereochemistry of (-)-mesembrane and 3'-methoxy-4'-O-methyljoubertiamine, two minor bases from S. namaquense L. Bolus: x-ray analysis of (-)-mesembrane hydrochloride monohydrate. J Chem Soc, Perkin Trans 2. 1977(8):1098-104. doi.org/10.1039/P29770001098.

Snyckers FO, Strelow F, Wiechers A. Structures of partial racemic Sceletium alkaloid A4 and tortuosamine, pyridine alkaloids from Sceletium tortuosum. J Chem Soc D. 1971(22):1467-9. doi.org/10.1039/C29710001467.

Jeffs PW, Capps T, Johnson DB, Karle JM, Martin NH, Rauckman B. Sceletium alkaloids. VI. Minor alkaloids of S. namaquense and S. strictum. J Org Chem. 1974;39(18):2703-10.

Jeffs PW, Capps TM, Redfearn R. Sceletium alkaloids. Structures of five new bases from Sceletium namaquense. J Org Chem. 1982;47(19):3611-17.

BODENDORF K, KRIEGER W. Uber die Alkaloide von Mesembryanthemum tortuosum L [Alkaloids of Mesembryanthemum tortuosum]. Arch Pharm Ber Dtsch Pharm Ges. 1957 Oct;290/62(10):441-8. German. doi: 10.1002/ardp.19572901002.

Herbert RB, Kattah AE. The biosynthesis of Sceletium alkaloids in Sceletium subvelutinum L. Bolus. Tetrahedron. 1990;46(20):7105-18.

Harvey AL, Young LC, Viljoen AM, Gericke NP. Pharmacological actions of the South African medicinal and functional food plant Sceletium tortuosum and its principal alkaloids. J Ethnopharmacol. 2011 Oct 11;137(3):1124-9. doi: 10.1016/j.jep.2011.07.035.

Smith C. The effects of Sceletium tortuosum in an in vivo model of psychological stress. J Ethnopharmacol. 2011 Jan 7;133(1):31-6. doi: 10.1016/j.jep.2010.08.058.

Meyer GM, Wink CS, Zapp J, Maurer HH. GC-MS, LC-MS(n), LC-high resolution-MS(n), and NMR studies on the metabolism and toxicological detection of mesembrine and mesembrenone, the main alkaloids of the legal high "Kanna" isolated from Sceletium tortuosum. Anal Bioanal Chem. 2015 Jan;407(3):761-78. doi: 10.1007/s00216-014-8109-9.

Yin H, Ali Z, Ding Y, Wang Y-H, Cunningham MJ, Ibrahim MA, et al. Sceletorines A and B, two minor novel dimeric alkaloids of Mesembryanthemum tortuosum (synonym Sceletium tortuosum). Phytochem Lett. 2019;31:78-84. doi.org/10.1016/j.phytol.2019.03.013.

Arndt RR, Kruger PEJ. Alkaloids from Sceletium joubertii. Structure of joubertiamine, dihydrojoubertiamine, and dehydrojoubertiamine. Tetrahedron Lett. 1970;11(37):3237-40.

Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK. UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom. 2006;20(13):1989-94. doi: 10.1002/rcm.2550. Erratum in: Rapid Commun Mass Spectrom. 2006;20(14):2234. doi: 10.1002/rcm.2550.

Pi J, Wu X, Yang S, Zeng P, Feng Y. Rapid identification of erythrocyte phospholipids in Sprague-Dawley rats by ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J Sep Sci. 2015 Mar;38(6):886-93. doi: 10.1002/jssc.201401120.

Zhao L, Qi W, Chen F, Sun J, Yuan D. Metabolic Profile of Isocorynoxeine in Rats Obtained by Ultra-High Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry. Eur J Drug Metab Pharmacokinet. 2016 Oct;41(5):615-26. doi: 10.1007/s13318-015-0287-0.

Driffield M, Lloyd A, Bradley E, Roberts D. Identification and structural analysis of potential transfer complex in food wrapper and paper mold by MSE function in UPLC/Q-Tof liquid chromatograph and MassFragment software. Huanjing Huaxue. 2013;32(6):1107-10.

Guo J, Xue C, Duan J-a, Shang E-x, Qian D, Tang Y, et al. Fast characterization of constituents in HuangKui capsules using UPLC-QTOF-MS with collision enery and MassFragment software. Chromatographia. 2011;73(5-6):447-56.doi: 10.1007/s10337-011-1915-8.

Teran MDM, de Moreno de LeBlanc A, Savoy de Giori G, LeBlanc JG. Thiamine-producing lactic acid bacteria and their potential use in the prevention of neurodegenerative diseases. Appl Microbiol Biotechnol. 2021 Mar;105(5):2097-2107. doi: 10.1007/s00253-021-11148-7.

Zhu L, Ning N, Li Y, Zhang QF, Xie YC, Irshad M, Feng X, Tao XJ. Biatractylolide Modulates PI3K-Akt-GSK3?-Dependent Pathways to Protect against Glutamate-Induced Cell Damage in PC12 and SH-SY5Y Cells. Evid Based Complement Alternat Med. 2017;2017:1291458. doi: 10.1155/2017/1291458.

Singh A, Verma P, Raju A, Mohanakumar KP. Nimodipine attenuates the parkinsonian neurotoxin, MPTP-induced changes in the calcium binding proteins, calpain and calbindin. J Chem Neuroanat. 2019 Jan;95:89-94. doi: 10.1016/j.jchemneu.2018.02.001.

Kupsch A, Gerlach M, Pupeter SC, Sautter J, Dirr A, Arnold G, Opitz W, Przuntek H, Riederer P, Oertel WH. Pretreatment with nimodipine prevents MPTP-induced neurotoxicity at the nigral, but not at the striatal level in mice. Neuroreport. 1995 Mar 7;6(4):621-5. doi: 10.1097/00001756-199503000-00009.

Ota H, Ogawa S, Ouchi Y, Akishita M. Protective effects of NMDA receptor antagonist, memantine, against senescence of PC12 cells: A possible role of nNOS and combined effects with donepezil. Exp Gerontol. 2015;72:109-16.

Cashman JR, Voelker T, Johnson R, Janowsky A. Stereoselective inhibition of serotonin re-uptake and phosphodiesterase by dual inhibitors as potential agents for depression. Bioorg Med Chem. 2009 Jan 1;17(1):337-43. doi: 10.1016/j.bmc.2008.10.065.

Rodríguez JJ, Noristani HN, Verkhratsky A. The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol. 2012 Oct;99(1):15-41. doi: 10.1016/j.pneurobio.2012.06.010.

Xu Y, Zhu N, Xu W, Ye H, Liu K, Wu F, Zhang M, Ding Y, Zhang C, Zhang H, O'Donnell J, Pan J. Inhibition of Phosphodiesterase-4 Reverses A?-Induced Memory Impairment by Regulation of HPA Axis Related cAMP Signaling. Front Aging Neurosci. 2018 Jul 24;10:204. doi: 10.3389/fnagi.2018.00204.

Zhong J, Xie J, Xiao J, Li D, Xu B, Wang X, Wen H, Zhou Z, Cheng Y, Xu J, Wang H. Inhibition of PDE4 by FCPR16 induces AMPK-dependent autophagy and confers neuroprotection in SH-SY5Y cells and neurons exposed to MPP+-induced oxidative insult. Free Radic Biol Med. 2019 May 1;135:87-101. doi: 10.1016/j.freeradbiomed.2019.02.027.

Blokland A, Heckman P, Vanmierlo T, Schreiber R, Paes D, Prickaerts J. Phosphodiesterase Type 4 Inhibition in CNS Diseases. Trends Pharmacol Sci. 2019 Dec;40(12):971-985. doi: 10.1016/j.tips.2019.10.006.

Li Q, Peng Y, Fan L, Xu H, He P, Cao S, Li J, Chen T, Ruan W, Chen G. Phosphodiesterase-4 inhibition confers a neuroprotective efficacy against early brain injury following experimental subarachnoid hemorrhage in rats by attenuating neuronal apoptosis through the SIRT1/Akt pathway. Biomed Pharmacother. 2018 Mar;99:947-955. doi: 10.1016/j.biopha.2018.01.093.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Journal of Pharmaceutical and Biomedical Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.