Journal of Pharmaceutical and Biomedical Sciences

Proteomics in Natural Products: An Overview of Bioactive Compounds Research

Huang Huibin, He Jun

Abstract


Proteomics originated from 2-dimensional electrophoresis more than thirty years ago. Technological advances have made proteomics one of the most flourishing areas of modern biotechnology research. Proteomics mainly characterizes protein functions, protein–protein interactions, and protein modi?cation in cells, tissues or animals. The integration of proteomic data helps to screen bioactive compounds, biomarkers of diseases, or signaling pathways in cells or the whole body. Natural products are valuable resources that contain a variety of bioactive compounds. However, the mechanisms of action of many natural products and bioactive compounds are unclear. The identification of the target proteins of discovered biologically active natural products to understand their mechanisms is a critical hurdle for their development into clinical drugs. This review describes the application of proteomics to determine the mechanisms of natural products, including compounds, peptides and mixtures in the recent years. This article summarizes progress on antimicrobials, antineoplastics, antiparasitics, nervous system drugs, antivirals and cardiovascular disease drugs.


Keywords


Drug discovery; natural products; proteomics.

Full Text:

References


Chang J, Kwon HJ. Discovery of novel drug targets and their functions using phenotypic screening of natural products. J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):221-31. doi: 10.1007/s10295-015-1681-y.

Douglas Kinghorn, Young-Won Chin, and Steven M. Swanson .Discovery of Natural Product Anticancer Agents from Biodiverse Organisms. Curr Opin Drug Discov Devel. 2009 Mar; 12(2): 189–196.

Irkin R, Esmer OK. Novel food packaging systems with natural antimicrobial agents. J Food Sci Technol. 2015 Oct;52(10):6095-111.

Alencar EN, Xavier-Júnior FH, Morais AR, Dantas TR, Dantas-Santos N, Verissimo LM, Rehder VL, Chaves GM, Oliveira AG, Egitol ES. Chemical Characterization and Antimicrobial Activity Evaluation of Natural Oil Nanostructured Emulsions. J Nanosci Nanotechnol. 2015 Jan;15(1):880-8.

Derosa G, Romano D, D'Angelo A, Maffioli P. Berberis aristata/Silybum marianum fixed combination (Berberol(®)) effects on lipid profile in dyslipidemic patients intolerant to statins at high dosages: a randomized, placebo-controlled, clinical trial. Phytomedicine. 2015 Feb 15;22(2):231-7.

Prota AE, Bargsten K, Diaz JF, Marsh M, Cuevas C, Liniger M, Neuhaus C, Andreu JM, Altmann KH, Steinmetz MO. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13817-21.

Jantan I, Ahmad W, Bukhari SN. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci. 2015 Aug 25;6:655.

Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996;13:19-50.

Jeffery DA, Bogyo M. Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol. 2003 Feb;14(1):87-95.

Owens J. Topological proteomics: A new approach to drug discovery. Drug Discov Today. 2001 Nov 1;6(21):1081-1082.

Nuerrula Y, Rexiati M, Liu Q, Wang YJ. Differential expression and clinical significance of serum protein among patients with clear-cell renal cell carcinoma. Cancer Biomark. 2015 Jun 2;15(4):485-91.

Hilton GM, Taylor AJ, McClure CD, Parsons GN, Bonner JC, Bereman MS. Toxicoproteomic analysis of pulmonary carbon nanotube exposure using LC-MS/MS. Toxicology. 2015 Mar 2;329:80-7.

Kubo Y, Ohtsuki S, Uchida Y, Terasaki T. Quantitative Determination of Luminal and Abluminal Membrane Distributions of Transporters in Porcine Brain Capillaries by Plasma Membrane Fractionation and Quantitative Targeted Proteomics. J Pharm Sci. 2015 Sep;104(9):3060-8.

Karp NA, Griffin JL, Lilley KS. Application of partial least squares discriminant analysis to two-dimensional difference gel studies in expression proteomics. Proteomics. 2005 Jan;5(1):81-90.

Oliveira BM, Coorssen JR, Martins-de-Souza D. 2DE: the phoenix of proteomics. J Proteomics. 2014 Jun 2;104:140-50.

Unlü M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997 Oct;18(11):2071-7.

Samson Jamesdaniel, Richard Salvi, and Donald Coling. Auditory proteomics: methods, accomplishments and challenges. Brain Res. 2009 June 24; 1277: 24–36.

May C, Brosseron F, Chartowski P, Meyer HE, Marcus K. Differential proteome analysis using 2D-DIGE. Methods Mol Biol. 2012;893:75-82.

Friedman DB, Lilley KS. Optimizing the difference gel electrophoresis (DIGE) technology. Methods Mol Biol. 2008;428:93-124.

Greengauz-Roberts O, Stöppler H, Nomura S, Yamaguchi H, Goldenring JR, Podolsky RH, Lee JR, Dynan WS. Saturation labeling with cysteine-reactive cyanine fluorescent dyes provides increased sensitivity for protein expression profiling of laser-microdissected clinical specimens. Proteomics. 2005 May;5(7):1746-57.

McQueen P, Krokhin O. Optimal selection of 2D reversed-phase-reversed-phase HPLC separation techniques in bottom-up proteomics. Expert Rev Proteomics.2012 Apr;9(2):125-8.

Vuckovic D, Dagley LF, Purcell AW, Emili A. Membrane proteomics by high performance liquid chromatography-tandem mass spectrometry: Analytical approaches and challenges. Proteomics. 2013 Feb;13(3-4):404-23.

Badock V, Steinhusen U, Bommert K, Otto A. Prefractionation of protein samples for proteome analysis using reversed-phase high-performance liquid chromatography. Electrophoresis. 2001 Aug;22(14):2856-64.

Ren D, Pipes G, Xiao G, Kleemann GR, Bondarenko PV, Treuheit MJ, Gadgil HS. Reversed-phase liquid chromatography-mass spectrometry of site-specific chemical modifications in intact immunoglobulin molecules and their fragments. J Chromatogr A. 2008 Feb 1;1179(2):198-204.

Di Palma S, Hennrich ML, Heck AJ, Mohammed S. Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J Proteomics. 2012 Jul 16;75(13):3791-813.

Lecchi P, Gupte AR, Perez RE, Stockert LV, Abramson FP. Size-exclusion chromatography in multidimensional separation schemes for proteome analysis. J Biochem Biophys Methods. 2003 Jun 30;56(1-3):141-52.

Lee W.C., Lee, K. H. Applications of affinity chromatography in proteomics. Anal biochem. 2004. 324:1-10.

Colatriano D, Walsh DA. An Aquatic Microbial Metaproteomics Workflow: From Cells to Tryptic Peptides Suitable for Tandem Mass Spectrometry-based Analysis. J Vis Exp. 2015 Sep 15;(103). doi: 10.3791/52827.

Shih-Yi Lin, Wu-Huei Hsu, Cheng-Chieh Lin, and Chao-Jung Chen. Mass spectrometry-based proteomics in Chest Medicine, Gerontology, and Nephrology: subgroups omics for personalized medicine. Biomedicine (Taipei). 2014 Dec; 4(4): 25.

Lukas Käll and Olga Vitek. Computational Mass Spectrometry–Based Proteomics. PLoS Comput Biol. 2011 Dec; 7(12): e1002277.

Mallick P, Kuster B. Proteomics: a pragmatic perspective. Nat Biotechnol. 2010. 28:695–709.

Walther TC, Mann M. Mass spectrometry based proteomics in cell biology. J Cell Biol. 2010 190: 491.

Lukas Käll and Olga Vitek. Computational Mass Spectrometry–Based Proteomics PLoS Comput Biol. 2011 Dec; 7(12): e1002277.

Albalat A, Husi H, Stalmach A, Schanstra JP, Mischak H. Classical MALDI-MS versus CE-based ESI-MS proteomic profiling in urine for clinical applications. Bioanalysis. 2014 Jan;6(2):247-66.

Nomura F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology. Biochim Biophys Acta. 2015 Jun;1854(6):528-37.

Cillero-Pastor B, Heeren RM. Matrix-assisted laser desorption ionization mass spectrometry imaging for peptide and protein analyses: a critical review of on-tissue digestion. J Proteome Res. 2014 Feb 7;13(2):325-35.

Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C. Identifying proteins from two dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 1993;90:5011–5015.

Forde CE, McCutchen-Maloney SL. Characterization of transcription factors by mass spectrometry and the role of SELDI-MS. Mass Spectrom Rev. 2002 Nov-Dec;21(6):419-39.

Upadhyay RD, Balasinor NH, Kumar AV, Sachdeva G, Parte P, Dumasia K. Proteomics in reproductive biology: beacon for unraveling the molecular complexities. Biochim Biophys Acta. 2013 Jan;1834(1):8-15.

Granholm V, Ka¨ ll L. Quality assessments of peptide? spectrum matches in shotgun proteomics. Proteomics. 2011. 11: 1086–1093

Christophe Tastet, Pierre Lescuyer, Hélène Diemer, Sylvie Luche, Alain van Dorsselaer, and Thierry Rabilloud. A versatile electrophoresis system for the analysis of high- and low-molecular-weight proteins. Electrophoresis. 2003 Jun; 24(11): 1787–1794.

Lam H, Aebersold R. Building and searching tandem mass (MS/MS) spectral libraries for peptide identification in proteomics. 2011. Methods 54: 424–431.

Haynes PA, Yates JR 3rd. Proteome profiling-pitfalls and progress. Yeast. 2000 Jun 30;17(2):81-7.

Yates JR 3rd, Washburn MP. Quantitative proteomics. Anal Chem. 2013 Oct 1;85(19):8881.

Kathryn S. Lilley, and Paul Dupree. Methods of quantitative proteomics and their application to plant organelle characterization. Journal of Experimental Botany. 2006. Vol. 57, No. 7, pp. 1493–1499.

Chen X, Wei S, Ji Y, Guo X, Yang F. Quantitative proteomics using SILAC: Principles, applications, and developments. Proteomics. 2015 Sep;15(18):3175-92.

Bantscheff M, Hopf C, Kruse U, Drewes G. Proteomics-based strategies in kinase drug discovery. Ernst Schering Found Symp Proc. 2007;(3):1-28.

Benlian Wang, Grant Hom, Sheng Zhou, Minfei Guo, Binbin Li, Jing Yang, Vincent M. Monnier and Xingjun Fan. The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. Aging Cell. 2017;16: 244–261.

Dailing A, Luchini A, Liotta L. Unlocking the secrets to protein-protein interface drug targets using structural mass spectrometry techniques. Expert Rev Proteomics. 2015 Oct;12(5):457-67.

Tran BQ, Goodlett DR, Goo YA. Advances in protein complex analysis by chemical cross-linking coupled with mass spectrometry (CXMS) and bioinformatics. Biochim Biophys Acta. 2015 May 27. pii: S1570-9639(15)00155-7.

Budayeva HG, Cristea IM. A mass spectrometry view of stable and transient protein interactions. Adv Exp Med Biol. 2014;806:263-82.

Kim HJ, Lin D, Li M, Liebler DC. Quantitative profiling of protein tyrosine kinases in human cancer cell lines by multiplexed parallel reaction monitoring assays. Mol Cell Proteomics. 2015 Sep 25. pii: mcp.O115.051813. [Epub ahead of print]

Reddy PJ, Ray S, Sathe GJ, Prasad TS, Rapole S, Panda D, Srivastava S. Proteomics analyses of Bacillus subtilis after treatment with plumbagin, a plant-derived naphthoquinone. OMICS. 2015 Jan;19(1):12-23.

Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015 Feb;14(2):111-29.

Yi S, Wang W, Bai F, Zhu J, Li J, Li X, Xu Y, Sun T, He Y. Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens. World J Microbiol Biotechnol. 2014 Feb;30(2):451-60.

Scarafoni A, Ronchi A, Prinsi B, Espen L, Assante G, Venturini G, Duranti M. The proteome of exudates from germinating Lupinus albus seeds is secreted through a selective dual-step process and contains proteins involved in plant defence. FEBS J. 2013 Mar;280(6):1443-59.

Sishuo Cao, Wentao Xu, Nan Zhang, Yan Wang, YunBo Luo, Xiaoyun He, and Kunlun Huang. A Mitochondria-Dependent Pathway Mediates the Apoptosis of GSE-Induced Yeast. PLoS One. 2012; 7(3): e32943.

Tan SY, Liu Y, Chua SL, Vejborg RM, Jakobsen TH, Chew SC, Li Y, Nielsen TE, Tolker-Niels. Comparative systems biology analysis to study the mode of action of the isothiocyanate compound Iberin on Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014 Nov;58(11):6648-59.

Hoehamer CF, Cummings ED, Hilliard GM, Rogers PD. Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob Agents Chemother. 2010 May;54(5):1655-64.

Robert M, Zatylny-Gaudin C, Fournier V, Corre E, Le Corguillé G, Bernay B, Henry J.. Transcriptomic and peptidomic analysis of protein hydrolysates from the white shrimp (L. vannamei). J Biotechnol. 2014 Sep 30;186:30-7.

Liao G, Xie L, Li X, Cheng Z, Xie J. Unexpected extensive lysine acetylation in the trump-card antibiotic producer Streptomyces roseosporus revealed by proteome-wide profiling. J Proteomics. 2014 Jun 25;106:260-9.

Yoo WG, Lee JH, Shin Y, Shim JY, Jung M, Kang BC, Oh J, Seong J, Lee HK, Kong HS, Song KD, Yun EY, Kim IW, Kwon YN, Lee DG, Hwang UW, Park J, Hwang JS. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans. Funct Integr Genomics. 2014 Jun;14(2):275-83.

Liu, H, Lv, L, Yang, K. Chemotherapy targeting cancer stem cells. Am. J. Cancer Res. 2015, 5, 880–893.

Hamavid H, Moradi-Lakeh M, MacIntyre MF, et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015 Jul;1(4):505-27.

Rahman M, Hasan MR. Cancer Metabolism and Drug Resistance. Metabolites. 2015 Sep 30;5(4):571-600. doi: 10.3390/metabo5040571.

Gallo MB, Falso MJ, Balem F, Menezes D, Rocha N, Balachandran R, Sturgeon TS, Pupo MT, Day BW. The anti-promyelocytic leukemia mode of action of two endophytic secondary metabolites unveiled by a proteomic approach. Planta Med. 2014 Apr;80(6):473-81.

Lai SL, Wong PF, Lim TK, Lin Q, Mustafa MR. iTRAQ-based proteomic identification of proteins involved in anti-angiogenic effects of Panduratin A on HUVECs. Phytomedicine. 2015 Jan 15;22(1):203-12.

Linhong Jing, Carol E. Parker, David Seo, Maria Warren Hines, Nedyalka Dicheva, Yanbao Yu, Debra Schwinn, Geoffrey S. Ginsburg, and Xian Chen. Discovery of biomarker candidates for coronary artery disease CAD) from an APOE-knock out mouse model using iTRAQ based multiplex quantitative proteomics. Proteomics. 2011 July ; 11(14): 2763–2776.

Jigang Wang, Xing Fei Tan, Van Sang Nguyen, et al. A Quantitative Chemical Proteomics Approach to Profile the Specific Cellular Targets of Andrographolide, a Promising Anticancer Agent That Suppresses Tumor Metastasis. Mol Cell Proteomics. 2014 Mar; 13(3): 876–886.

Dyshlovoy SA, Venz S, Shubina LK, Fedorov SN, Walther R, Jacobsen C, Stonik VA, Bokemeyer C, Balabanov S, Honecker F. Activity of aaptamine and two derivatives, demethyloxyaaptamine and isoaaptamine, in cisplatin-resistant germ cell cancer. J Proteomics. 2014 Jan 16;96:223-39.

Chen CY, Yang SC, Lee KH, Yang X, Wei LY, Chow LP, Wang TC, Hong TM, Lin JC, Kuan C, Yang PC. The antitumor agent PBT-1 directly targets HSP90 and hnRNP A2/B1 and inhibits lung adenocarcinoma growth and metastasis. J Med Chem. 2014 Feb 13;57(3):677-85.

Chen S, Gu C, Xu C, Zhang J, Xu Y, Ren Q, Guo M, Huang S, Chen L. Celastrol prevents cadmium-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. J Neurochem. 2014 Jan;128(2):256-66.

Feng L, Zhang D, Fan C, Ma C, Yang W, Meng Y, Wu W, Guan S, Jiang B, Yang M, Liu X, Guo D. ER stress-mediated apoptosis induced by celastrol in cancer cells and important role of glycogen synthase kinase-3? in the signal network. Cell Death Dis. 2013 Jul 11;4:e715. doi: 10.1038/cddis.2013.222.

Li LY, Zhang K, Jiang H, Xie YM, Liao LD, Chen B, Du ZP, Zhang PX, Chen H, Huang W, Jia W, Cao HH, Zheng W, Li EM, Xu LY. Quantitative proteomics reveals the downregulation of GRB2 as a prominent node of F806-targeted cell proliferation network. J Proteomics. 2015 Mar 18;117:145-55.

Krastel P, Roggo S, Schirle M, Ross NT, et al. Nannocystin A: an Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti-Cancer Properties. Angew Chem Int Ed Engl. 2015 Aug 24;54(35):10149-54.

Mutalip SS, Yunos NM, Abdul-Rahman PS, Jauri MH, Osman A, Adenan MI. Mechanisms of action of 17?H-neriifolin on its anticancer effect in SKOV-3 ovarian cancer cell line. Anticancer Res. 2014 Aug;34(8):4141-51.

Hahm ER, Lee J, Kim SH, Sehrawat A, Arlotti JA, Shiva SS, Bhargava R, Singh SV. Metabolic alterations in mammary cancer prevention by withaferin A in a clinically relevant mouse model. J Natl Cancer Inst. 2013 Aug 7;105(15):1111-22.

Lu JJ, Lu DZ, Chen YF, Dong YT, Zhang JR, Li T, Tang ZH, Yang Z. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D. Chin J Nat Med. 2015 Sep;13(9):673-9.

Zhang L, Jin J, Zhang L, Hu R, Gao L, Huo X, Liu D, Ma X, Wang C, Han J, Li L, Sun X, Cao L. Quantitative analysis of differential protein expression in cervical carcinoma cells after zeylenone treatment by stable isotope labeling with amino acids in cell culture. J Proteomics. 2015 Aug 3;126:279-87.

Li D, Song XY, Yue QX, Cui YJ, Liu M, Feng LX, Wu WY, Jiang BH, Yang M, Qu XB, Liu X, Guo DA. Proteomic and bioinformatic analyses of possible target-related proteins of gambogic acid in human breast carcinoma MDA-MB-231 cells. Chin J Nat Med. 2015 Jan;13(1):41-51.

Bolaños V, Díaz-Martínez A, Soto J, Rodríguez MA, López-Camarillo C, Marchat LA, Ramírez-Moreno E. The flavonoid (-)-epicatechin affects cytoskeleton proteins and functions in Entamoeba histolytica. J Proteomics. 2014 Dec 5;111:74-85.

Bürstner N, Roggo S, Ostermann N, Blank J, et al. Gift from Nature: Cyclomarin A Kills Mycobacteria and Malaria Parasites by Distinct Modes of Action. Chembiochem. 2015 Oct 16. doi: 10.1002/cbic.201500472.

Dileep Vasudevan, Srinivasa P. S. Rao, and Christian G. Noble. Structural Basis of Mycobacterial Inhibition by Cyclomarin A. J Biol Chem. 2013 Oct 25; 288(43):

Manavalan A, Feng L, Sze SK, Hu JM, Heese K. New insights into the brain protein metabolism of Gastrodia elata-treated rats by quantitative proteomics. J Proteomics. 2012 Apr 18;75(8):2468-79.

Zhang Z, Li G, Szeto SS, Chong CM, et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med. 2015 Jul;84:331-43.

Jiang T, Wang Z, Shenren, Xia T, Zhao X, Jiang L, Teng L. Quantitative proteomics analysis for effect of Acanthopanax senticosus extract on neuroinflammation. Pak J Pharm Sci. 2015 Jan;28(1 Suppl):313-8.

Sandu C, Ngounou Wetie AG, Darie CC, Steller H. Thiostrepton, a natural compound that triggers heat shock response and apoptosis in human cancer cells: a proteomics investigation. Adv Exp Med Biol. 2014;806:443-51.

Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A. Antiviral drug discovery: broad-spectrum drugs from nature. Nat Prod Rep. 2015 Jan;32(1):29-48.

Paulpandi M1, Kannan S, Thangam R, Kaveri K, Gunasekaran P, Rejeeth C. In vitro anti-viral effect of ?-santalol against influenza viral replication. Phytomedicine. 2012 Feb 15;19(3-4):231-5.

Li SW, Yang TC, Lai CC, Huang SH, Liao JM, Wan L, Lin YJ, Lin CW. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation. Eur J Pharmacol. 2014 Sep 5;738:125-32.

Ishida Y, Yamasaki M, Yukizaki C, Nishiyama K, Tsubouchi H, Okayama A, Kataoka H. Carnosol, rosemary ingredient, induces apoptosis in adult T-cell leukemia/lymphoma cells via glutathione depletion: proteomic approach using fluorescent two-dimensional differential gel electrophoresis. Hum Cell. 2014 Apr;27(2):68-77.

Luan SS, Yu F, Li BY, Qin RJ, Li XL, Cai Q, Yin WB, Cheng M, Gao HQ. Quantitative proteomics study of protective effects of grape seed procyanidin B2 on diabetic cardiomyopathy in db/db mice. Biosci Biotechnol Biochem. 2014;78(9):1577-83.

Hsieh SR, Cheng WC, Su YM, Chiu CH, Liou YM. Molecular targets for anti-oxidative protection of green tea polyphenols against myocardial ischemic injury. Biomedicine (Taipei). 2014;4:23. Epub 2014 Nov 20.

Panda S, Biswas S, Kar A. Trigonelline isolated from fenugreek seed protects against isoproterenol-induced myocardial injury through down-regulation of Hsp27 and ?B-crystallin. Nutrition. 2013 Nov-Dec;29(11-12):1395-403.

Yue QX, Xie FB, Song XY, Wu WY, Jiang BH, Guan SH, Yang M, Liu X, Guo DA. Proteomic studies on protective effects of salvianolic acids, notoginsengnosides and combination of salvianolic acids and notoginsengnosides against cardiac ischemic-reperfusion injury. J Ethnopharmacol. 2012 Jun 1;141(2):659-67.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Pharmaceutical and Biomedical Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.